On rational functions without Froissart doublets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation of Sparse Rational Functions Without Knowing Bounds on Exponents

We present the first algorithm for the (black box) interpolation of t-sparse, n-variate rational functions without knowing bounds on exponents of their sparse representation with the number of queries independent on exponents. In fact, the algorithm uses O(ntt) queries to the black box, and can be implemented for a fixed t in a polynomially bounded storage (or polynomial parallel time). natural...

متن کامل

Froissart Boundary for Deep Inelastic Structure Functions

In this letter we derive the Froissart boundary in QCD for the deep inelastic structure function in low x kinematic region. We show that the comparison of the Froissart boundary with the new HERA experimental data gives rise to a challenge for QCD to explain the matching between the deep inelastic scattering and real photoproduction process. ∗ E-mail: [email protected] ∗∗ E-mail:[email protected]...

متن کامل

On characterizations of the fully rational fuzzy choice functions

In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.

متن کامل

Hecke Operators on Rational Functions

Contents 1. Introduction 1 2. Some preliminaries 5 3. The point spectrum of U p 7 4. A structure theorem for eigenfunctions 14 5. A decomposition into finite dimensional eigenspaces 21 6. Simultaneous eigenfunctions 23 7. A first application: tensor products of Hecke operatorsand the Riemann zeta function 27 8. A second application: completely multiplicative coefficients 30 9. Appendix: Explici...

متن کامل

On the Froissart phenomenon in multivariate homogeneous Pad approximation

In univariate Padé approximation we learn from the Froissart phenomenon that Padé approximants to perturbed Taylor series exhibit almost cancelling pole–zero combinations that are unwanted. The location of these pole–zero doublets was recently characterized for rational functions by the so-called Froissart polynomial. In this paper the occurrence of the Froissart phenomenon is explored for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2017

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-017-0917-3